Machine Learning and Data Mining

2 : Bayes Classifiers

Kalev Kask

A basic classifier

- Training data $D=\left\{x^{(i)}, y^{(i)}\right\}$, Classifier $f(x ; D)$
- Discrete feature vector x
- $f(x$; $D)$ is a contingency table
- Ex: credit rating prediction (bad/good)
- $\mathrm{X}_{1}=$ income (low/med/high)
- How can we make the most \# of correct predictions?

Features	\# bad	\# good
$X=0$	42	15
$X=1$	338	287
$X=2$	3	5

A basic classifier

- Training data $D=\left\{x^{(i)}, y^{(i)}\right\}$, Classifier $f(x ; D)$
- Discrete feature vector x
$-f(x ; D)$ is a contingency table
- Ex: credit rating prediction (bad/good)
- $\mathrm{X}_{1}=$ income (low/med/high)
- How can we make the most \# of correct predictions?
- Predict more likely outcome for each possible observation

Features	\# bad	\# good
$X=0$	42	15
$X=1$	338	287
$X=2$	3	5

A basic classifier

- Training data $D=\left\{x^{(i)}, y^{(i)}\right\}$, Classifier $f(x ; D)$
- Discrete feature vector x
- $f(x ; D)$ is a contingency table
- Ex: credit rating prediction (bad/good)
- $\mathrm{X}_{1}=$ income (low/med/high)
- How can we make the most \# of correct predictions?
- Predict more likely outcome for each possible observation
- Can normalize into probability:

$$
p(y=\operatorname{good} \mid X=c)
$$

- How to generalize?

Features	\# bad	\# good
$\mathrm{X}=0$.7368	.2632
$\mathrm{X}=1$.5408	.4592
$\mathrm{X}=2$.3750	.6250

Bayes Rule

- Two events: headache, flu
- $p(H)=1 / 10$
- $p(F)=1 / 40$
- $p(H \mid F)=1 / 2$

- You wake up with a headache - what is the chance that you have the flu?

Example from Andrew

Bayes Rule

- Two events: headache, flu
- $p(H)=1 / 10$
- $p(F)=1 / 40$
- $p(H \mid F)=1 / 2$
- $\mathrm{P}(\mathrm{H} \& \mathrm{~F})=$?
- $\mathrm{P}(\mathrm{F} \mid \mathrm{H})=$?

Bayes rule

- Two events: headache, flu
- $p(H)=1 / 10$
- $p(F)=1 / 40$
- $p(H \mid F)=1 / 2$
- $P(H \& F)=p(F) p(H \mid F)$

$$
=(1 / 2) *(1 / 40)=1 / 80
$$

- $\mathrm{P}(\mathrm{F} \mid \mathrm{H})=$?

Bayes rule

- Two events: headache, flu
- $p(H)=1 / 10$
- $p(F)=1 / 40$
- $p(H \mid F)=1 / 2$
- $P(H \& F)=p(F) p(H \mid F)$

$$
=(1 / 2) *(1 / 40)=1 / 80
$$

- $P(F \mid H)=p(H \& F) / p(H)$
$=(1 / 80) /(1 / 10)=1 / 8$

Example from Andrew Moore's slides

Classification and probability

- Suppose we want to model the data
- Prior probability of each class, $p(y)$
- E.g., fraction of applicants that have good credit
- Distribution of features given the class, $p(x \mid y=c)$
- How likely are we to see " x " in users with good credit?
- Joint distribution

$$
p(y \mid x) p(x)=p(x, y)=p(x \mid y) p(y)
$$

Posterior $=($ Likelihood $*$ Prior) / Evidence

- Bayes Rule:

$$
\Rightarrow \quad p(y \mid x)=p(x \mid y) p(y) / p(x)
$$

(Use the rule of total probability

$$
\Rightarrow \frac{p(x \mid y) p(y)}{\sum_{c} p(x \mid y=c) p(y=c)}
$$

Bayes classifiers

Learn "class conditional" models

- Estimate a probability model for each class
- Training data
- Split by class
- $D_{c}=\left\{x^{(j)}: y^{(j)}=c\right\}$
- Estimate $p(x \mid y=c)$ using D_{c}
- For a discrete x , this recalculates the same table...

Features	\# bad	\# good	$p(x)$	$\mathrm{p}(\mathrm{x}$ \|	$p(y=0 \mid x)$	$p(y=1 \mid x)$
X=0	42	15	$\mathrm{y}=0$)	$\mathrm{y}=1$)	. 7368	. 2632
$\mathrm{X}=1$	338	287	$\begin{gathered} 42 \text { / } \\ 383 \end{gathered}$	15 / 307	. 5408	. 4592
$X=2$	3	5	338/383	287 / 307	. 3750	. 6250
p(y)	383/690	307/690	$3 / 383$	5 / 307		

Bayes classifiers

Learn "class conditional" models

- Estimate a probability model for each class
- Training data
- Split by class
- $D_{c}=\left\{x^{(j)}: y^{(j)}=c\right\}$
- Estimate $p(x \mid y=c)$ using D_{c}
- For continuous x, can use any density estimate we like
- Histogram
- Gaussian

Gaussian models

- Estimate parameters of the Gaussians from the data

$$
\alpha=\frac{m_{1}}{m}=\hat{p}\left(y=c_{1}\right) \quad \hat{\mu}=\frac{1}{m} \sum_{j} x^{(j)} \quad \hat{\sigma}^{2}=\frac{1}{m} \sum_{j}\left(x^{(j)}-\mu\right)^{2}
$$

Multivariate Gaussian models

- Similar to univariate case

$$
\begin{aligned}
\mathcal{N}(\underline{x} ; \underline{\mu}, \Sigma)=\frac{1}{(2 \pi)^{d / 2}}|\Sigma|^{-1 / 2} \exp \{ & \left.-\frac{1}{2}(\underline{x}-\underline{\mu})^{T} \Sigma^{-1}(\underline{x}-\underline{\mu})\right\} \\
1 & =\text { length-d column vector } \\
\S & =\mathbf{d} \mathbf{x} \text { d matrix }
\end{aligned}
$$

|§| = matrix determinant

Maximum likelihood estimate:

$$
\begin{aligned}
\hat{\mu} & =\frac{1}{m} \sum_{j} \underline{x}^{(j)} \\
\hat{\Sigma} & =\frac{1}{m} \sum_{j}\left(\underline{x}^{(j)}-\underline{\hat{\mu}}\right)^{T}\left(\underline{x}^{(j)}-\underline{\hat{\mu}}\right)
\end{aligned}
$$

Example: Gaussian Bayes for Iris Data

- Fit Gaussian distribution to each class $\{0,1,2\}$

$$
\begin{aligned}
& p(y)=\operatorname{Discrete}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) \\
& p\left(x_{1}, x_{2} \mid y=0\right)=\mathcal{N}\left(x ; \mu_{0}, \Sigma_{0}\right) \\
& p\left(x_{1}, x_{2} \mid y=1\right)=\mathcal{N}\left(x ; \mu_{1}, \Sigma_{1}\right) \\
& p\left(x_{1}, x_{2} \mid y=2\right)=\mathcal{N}\left(x ; \mu_{2}, \Sigma_{2}\right)
\end{aligned}
$$

Bayes classifiers

- Estimate $p(y)=[p(y=0), p(y=1) \ldots]$
- Estimate $p(x \mid y=c)$ for each class c
- Calculate $p(y=c \mid x)$ using Bayes rule
- Choose the most likely class c
- For a discrete x , can represent as a contingency table...
- What about if we have more discrete features?

Features	\# bad	\# good	$p(x)$	$p(x)$	$p(y=0 \mid x)$	$p(y=1 \mid x)$
X=0	42	15	$\mathrm{y}=0$)	$\mathrm{y}=1$)	. 7368	. 2632
$X=1$	338	287	$\begin{gathered} 42 \text { / } \\ 383 \end{gathered}$	15 / 307	. 5408	. 4592
$X=2$	3	5	338/383	287 / 307	. 3750	. 6250
p(y)	383/690	307/690	$3 / 383$	$5 / 307$		

Joint distributions

Make a truth table of all combinations of values

A	\mathbf{B}	\mathbf{C}
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Joint distributions

- Make a truth table of all combinations of values
- For each combination of values, determine how probable it is
- Total probability must sum to one

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{p}(\mathbf{A}, \mathbf{B}, \mathrm{C} \mid \mathbf{y}=\mathbf{1})$
0	0	0	0.50
0	0	1	0.05
0	1	0	0.01
0	1	1	0.10
1	0	0	0.04
1	0	1	0.15
1	1	0	0.05
1	1	1	0.10

- How many values did we specify?

Overfitting \& density estimation

- Estimate probabilities from the data
- E.g., how many times (what fraction) did each outcome occur?
- M data $\ll 2^{\wedge} \mathrm{N}$ parameters?
- What about the zeros?

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{p}(\mathbf{A}, \mathbf{B}, \mathbf{C} \mid \mathbf{y}=\mathbf{1})$
0	0	0	$4 / 10$
0	0	1	$1 / 10$
0	1	0	$0 / 10$
0	1	1	$0 / 10$
1	0	0	$1 / 10$
1	0	1	$2 / 10$
1	1	0	$1 / 10$
1	1	1	$1 / 10$

- We learn that certain combinations are impossible?
- What if we see these later in test data?
- Overfitting!

Overfitting \& density estimation

- Estimate probabilities from the data
- E.g., how many times (what fraction) did each outcome occur?
- M data $\ll 2^{\wedge} \mathrm{N}$ parameters?
- What about the zeros?

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{p}(\mathbf{A}, \mathbf{B}, \mathbf{C} \mid \mathbf{y}=\mathbf{1})$
0	0	0	$4 / 10$
0	0	1	$1 / 10$
0	1	0	$0 / 10$
0	1	1	$0 / 10$
1	0	0	$1 / 10$
1	0	1	$2 / 10$
1	1	0	$1 / 10$
1	1	1	$1 / 10$

- We learn that certain combinations are impossible?
- What if we see these later in test data?
- One option: regularize $\hat{p}(a, b, c) \propto\left(M_{a b c}+\alpha\right)$
- Normalize to make sure values sum to one...

Overfitting \& density estimation

- Another option: reduce the model complexity
- E.g., assume that features are independent of one another
- Independence:
- $p(a, b)=p(a) p(b)$
- $p\left(x_{1}, x_{2}, \ldots x_{N} \mid y=1\right)=p\left(x_{1} \mid y=1\right) p\left(x_{2} \mid y=1\right) \ldots p\left(x_{N} \mid y=1\right)$
- Only need to estimate each individually

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{p}(\mathbf{A}, \mathrm{B}, \mathrm{C} \mid \mathbf{y}=1)$
0	0	0	$.4^{*} .7^{*} .1$
0	0	1	$.4^{*} .7^{*} .9$
0	1	0	$.4^{*} .3^{*} .1$
0	1	1	\ldots
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Example: Naïve Bayes

Observed Data:

x_{1}	x_{2}	\mathbf{y}
1	1	0
1	0	0
1	0	1
0	0	0
0	1	1
1	1	0
0	0	1
1	0	1

$$
\begin{aligned}
& \hat{p}(y=1)=\frac{4}{8}=(1-\hat{p}(y=0)) \\
& \hat{p}\left(x_{1}, x_{2} \mid y=0\right)=\hat{p}\left(x_{1} \mid y=0\right) \hat{p}\left(x_{2} \mid y=0\right) \\
& \hat{p}\left(x_{1}=1 \mid y=0\right)=\frac{3}{4} \quad \hat{p}\left(x_{1}=1 \mid y=1\right)=\frac{2}{4} \\
& \hat{p}\left(x_{2}=1 \mid y=0\right)=\frac{2}{4} \quad \hat{p}\left(x_{2}=1 \mid y=1\right)=\frac{1}{4}
\end{aligned}
$$

Prediction given some observation x ?

$$
\begin{array}{ccc}
\hat{p}(y=1) \hat{p}(x=11 \mid y=1) & < & \hat{p}(y=0) \hat{p}(x=11 \mid y=0) \\
\frac{4}{8} \times \frac{2}{4} \times \frac{1}{4} & \frac{4}{8} \times \frac{3}{4} \times \frac{2}{4}
\end{array}
$$

Decide class 0

Example: Naïve Bayes

Observed Data:

$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	\mathbf{y}
1	1	0
1	0	0
1	0	1
0	0	0
0	1	1
1	1	0
0	0	1
1	0	1

$$
\hat{p}(y=1)=\frac{4}{8} \quad=(1-\hat{p}(y=0))
$$

$$
\hat{p}\left(x_{1}, x_{2} \mid y=0\right)=\hat{p}\left(x_{1} \mid y=0\right) \hat{p}\left(x_{2} \mid y=0\right)
$$

$$
\hat{p}\left(x_{1}=1 \mid y=0\right)=\frac{3}{4} \quad \hat{p}\left(x_{1}=1 \mid y=1\right)=\frac{2}{4}
$$

$$
\hat{p}\left(x_{2}=1 \mid y=0\right)=\frac{2}{4}
$$

$$
\hat{p}\left(x_{2}=1 \mid y=1\right)=\frac{1}{4}
$$

$$
\begin{aligned}
\hat{p}\left(y=1 \mid x_{1}=1, x_{2}=1\right) & =\frac{\frac{4}{8} \times \frac{2}{4} \times \frac{1}{4}}{\frac{3}{4} \times \frac{2}{4} \times \frac{4}{8}+\frac{2}{4} \times \frac{1}{4} \times \frac{4}{8}} \\
& =\frac{1}{4}
\end{aligned}
$$

Example: Joint Bayes

Observed Data:

$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	\mathbf{y}
1	1	0
1	0	0
1	0	1
0	0	0
0	1	1
1	1	0
0	0	1
1	0	1

$$
\hat{p}(y=1)=\frac{4}{8} \quad=(1-\hat{p}(y=0))
$$

$$
\hat{p}\left(x_{1}, x_{2} \mid y=0\right)=\quad \hat{p}\left(x_{1}, x_{2} \mid y=1\right)=
$$

\mathbf{x}_{1}	x_{2}	$p(x \mid y=0)$
0	0	$1 / 4$
0	1	$0 / 4$
1	0	$1 / 4$
1	1	$2 / 4$

x_{1}	x_{2}	$p(x \mid y=1)$
0	0	$1 / 4$
0	1	$1 / 4$
1	0	$2 / 4$
1	1	$0 / 4$

$$
\begin{aligned}
\hat{p}\left(y=1 \mid x_{1}=1, x_{2}=1\right) & =\frac{\frac{4}{8} \times 0}{} \frac{2}{4} \times \frac{4}{8}+\frac{4}{8} \\
& =0
\end{aligned}
$$

Naïve Bayes Models

- Variable y to predict, e.g. "auto accident in next year?"
- We have *many* co-observed vars $\mathbf{x}=\left[\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}\right]$
- Age, income, education, zip code, ...
- Want to learn $p\left(y \mid x_{1} \ldots x_{n}\right)$, to predict y
- Arbitrary distribution: $O\left(d^{n}\right)$ values!
- Naïve Bayes:
$-p(y \mid x)=p(x \mid y) p(y) / p(x) \quad ; p(\mathbf{x} \mid y)=\Pi_{t} p\left(x_{i} \mid y\right)$
- Covariates are independent given "cause"
- Note: may not be a good model of the data
- Doesn't capture correlations in x's
- Can't capture some dependencies
- But in practice it often does quite well!

Naïve Bayes Models for Spam

- y 2 \{spam, not spam\}
- X = observed words in email
- Ex: ["the" ... "probabilistic" ... "lottery"...]
- "1" if word appears; "0" if not
- 1000's of possible words: $2^{1000 s}$ parameters?
- \# of atoms in the universe: » $2^{270} \ldots$
- Model words given email type as independent
- Some words more likely for spam ("lottery")
- Some more likely for real ("probabilistic")
- Only 1000's of parameters now...

Naïve Bayes Gaussian Models

$p\left(x_{1}\right)=\frac{1}{Z} \exp \left\{-\frac{1}{2 \sigma_{1}^{2}}\left(x_{1}-\mu_{1}\right)^{2}\right\}$ $p\left(x_{2}\right)=\frac{1}{Z_{2}} \exp \left\{-\frac{1}{2 \sigma_{2}^{2}}\left(x_{2}-\mu_{2}\right)^{2}\right\}$
$p\left(x_{1}\right) p\left(x_{2}\right)=\frac{1}{Z_{1} Z_{2}} \exp \left\{-\frac{1}{2}(\underline{x}-\underline{\mu})^{T} \Sigma^{-1}(\underline{x}-\underline{\mu})\right\}$

$$
\begin{aligned}
\underline{\mu} & =\left[\mu_{1} \mu_{2}\right] \\
\Sigma & =\operatorname{diag}\left(\sigma_{1}^{2}, \sigma_{2}^{2}\right)
\end{aligned}
$$

Again, reduces the number of parameters of the model: Bayes: $\mathrm{n}^{2 / 2}$ Naïve Bayes: n

You should know...

- Bayes rule; $p(y \mid x)=p(x \mid y) p(y) / p(x)$
- Bayes classifiers
- Learn $p(x \mid y=C), p(y=C)$
- Maximum likelihood (empirical) estimators for
- Discrete variables
- Gaussian variables
- Overfitting; simplifying assumptions or regularization
- Naïve Bayes classifiers
- Assume features are independent given class:

$$
p(x \mid y=C)=p\left(x_{1} \mid y=C\right) p\left(x_{2} \mid y=C\right) \ldots
$$

A Bayes Classifier

- Given training data, compute $p(y=c \mid x)$ and choose largest
- What's the (training) error rate of this method?

Features	\# bad	\# good
$\mathrm{X}=0$	42	15
$\mathrm{X}=1$	338	287
$\mathrm{X}=2$	3	5

A Bayes classifier

- Given training data, compute $p(y=c \mid x)$ and choose largest
- What's the (training) error rate of this method?

Features	\# bad	\# good
$X=0$	42	15
$X=1$	338	287
$X=2$	3	5

Gets these examples wrong:

$\operatorname{Pr}[$ error $]=(15+287+3) /(690)$
(empirically on training data: better to use test data)

Bayes Error Rate

- Suppose that we knew the true probabilities:
$p(x, y) \Rightarrow p(y), p(x \mid y=0), p(x \mid y=1)$
- Observe any $\mathrm{x}: \Rightarrow p(y=0 \mid x)$ (at any x)

$$
p(y=1 \mid x)
$$

- Optimal decision at that particular x is:

$$
\hat{y}=f(x)=\arg \max _{c} p(y=c \mid x)
$$

- Error rate is:

$$
\mathbb{E}_{x y}[y \neq \hat{y}]=\mathbb{E}_{x}\left[1-\max _{c} p(y=c \mid x)\right]=\text { "Bayes error rate" }
$$

- This is the best that any classifier can do!
- Measures fundamental hardness of separating y-values given only features x
- Note: conceptual only!
- Probabilities $p(x, y)$ must be estimated from data
- Form of $p(x, y)$ is not known and may be very complex

A Bayes classifier

- Bayes classification decision rule compares probabilities:

$$
\left.\begin{array}{rl}
p(y=0 \mid x) & <p(y=1 \mid x) \\
& >p(y=0, x)
\end{array}\right)<p(y=1, x)
$$

- Can visualize this nicely if x is a scalar:

A Bayes classifier

- Not all errors are created equally...
- Risk associated with each outcome?

Add multiplier alpha:

$$
\alpha p(y=0, x)<p(y=1, x)
$$

Type 2 errors: false negatives

False positive rate: (\# y=0, $\hat{y}=1) /(\# y=0)$
False negative rate: (\# y=1, $\hat{y}=0) /(\# y=1)$

A Bayes classifier

- Increase alpha: prefer class 0
- Spam detection

Add multiplier alpha:

$$
\alpha p(y=0, x)<p(y=1, x)
$$

Type 1 errors: false positives
Type 2 errors: false negatives

False positive rate: (\# y=0, $\hat{y}=1) /(\# y=0)$
False negative rate: (\# y=1, $\mathrm{y}=0) /(\# y=1)$

A Bayes classifier

- Decrease alpha: prefer class 1
- Cancer detection

Add multiplier alpha:

$$
\alpha p(y=0, x)<p(y=1, x)
$$

Type 1 errors: false positives
Type 2 errors: false negatives

False positive rate: (\# y=0, $\hat{y}=1) /(\# y=0)$
False negative rate: (\# y=1, $\mathrm{y}=0) /(\# y=1)$

Measuring errors

- Confusion matrix
- Can extend to more classes

	Predict 0	Predict 1
$\mathrm{Y}=0$	380	5
$\mathrm{Y}=1$	338	3

- True positive rate: $\#(y=1, \hat{y}=1) / \#(y=1) \quad-$ "sensitivity"
- False negative rate: \#(y=1, $\hat{\mathrm{y}}=0) / \#(\mathrm{y}=1)$
- False positive rate: $\#(y=0, \hat{y}=1) / \#(y=0)$
- True negative rate: $\#(\mathrm{y}=0, \hat{\mathrm{y}}=0) / \#(\mathrm{y}=0) \quad--$ "specificity"

ROC Curves

- Characterize performance as we vary the decision threshold?

ROC Curves

- Characterize performance as we vary our confidence threshold?

Guess all 0

Reduce performance to one number? $\mathrm{AUC}=$ "area under the ROC curve" 0.5 <AUC < 1

Probabilistic vs. Discriminative learning

"Discriminative" learning: Output prediction $\hat{y}(x)$

"Probabilistic" learning: Output probability $\mathrm{p}(\mathrm{y} \mid \mathrm{x})$ (expresses confidence in outcomes)

- "Probabilistic" learning
- Conditional models just explain $\mathrm{y}: ~ \mathrm{p}(\mathrm{y} \mid \mathrm{x})$
- Generative models also explain $\mathrm{x}: \mathrm{p}(\mathrm{x}, \mathrm{y})$
- Often a component of unsupervised or semi-supervised learning
- Bayes and Naïve Bayes classifiers are generative models

Gaussian models

- "Bayes optimal" decision
- Choose most likely class
- Decision boundary
- Places where probabilities equal
-What shape is the boundary?

Gaussian models

- Bayes optimal decision boundary
$-p(y=0 \mid x)=p(y=1 \mid x)$
- Transition point between $p(y=0 \mid x)>/<p(y=1 \mid x)$
- Assume Gaussian models with equal covariances

$$
\begin{gathered}
\mathcal{N}(\underline{x} ; \underline{\mu}, \Sigma)=\frac{1}{(2 \pi)^{d / 2}}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\underline{x}-\underline{\mu})^{T} \Sigma^{-1}(\underline{x}-\underline{\mu})\right\} \\
0<\log \frac{p(x \mid y=0)}{p(x \mid y=1)} \frac{p(y=0)}{p(y=1)}=\log \frac{p(y=0)}{p(y=1)}+ \\
-.5\left(x \Sigma^{-1} x-2 \mu_{0}^{T} \Sigma^{-1} x+\mu_{0}^{T} \Sigma^{-1} \mu_{0}\right) \\
+.5\left(x \Sigma^{-1} x-2 \mu_{1}^{T} \Sigma^{-1} x+\mu_{1}^{T} \Sigma^{-1} \mu_{1}\right) \\
=\left(\mu_{0}-\mu_{1}\right)^{T} \Sigma^{-1} x+\text { constants }
\end{gathered}
$$

Gaussian example

- Spherical covariance: $\Sigma=\sigma^{2}$ I
- Decision rule

$$
\begin{aligned}
&=\left(\mu_{0}-\mu_{1}\right)^{T} \Sigma^{-1} x+\text { constants } \\
&\left(\mu_{0}-\mu_{1}\right)^{T} x<C
\end{aligned}
$$

$$
\begin{aligned}
C= & .5\left(\mu_{0}^{T} \Sigma^{-1} \mu_{0}\right. \\
& \left.-\mu_{1}^{T} \Sigma^{-1} \mu_{1}\right) \\
& -\log \frac{p(y=0)}{p(y=1)}
\end{aligned}
$$

Class posterior probabilities

Useful to also know class probabilities

- Some notation
- $p(y=0), p(y=1)$ - class prior probabilities
- How likely is each class in general?
- $p(x \mid y=c)$ - class conditional probabilities
- How likely are observations " x " in that class?
- $p(y=c \mid x)$ - class posterior probability
- How likely is class c given an observation x ?

Class posterior probabilities

- Useful to also know class probabilities
- Some notation
- $p(y=0), p(y=1)$ - class prior probabilities
- How likely is each class in general?
- $p(x \mid y=c)$ - class conditional probabilities
- How likely are observations " x " in that class?
- $p(y=c \mid x)$ - class posterior probability
- How likely is class c given an observation x ?
- We can compute posterior using Bayes' rule
$-p(y=c \mid x)=p(x \mid y=c) p(y=c) / p(x)$
- Compute $p(x)$ using sum rule / law of total prob.
$-p(x)=p(x \mid y=0) p(y=0)+p(x \mid y=1) p(y=1)$
$-\quad=p(y=0, x)+p(y=1, x)$

Class posterior probabilities

- Consider comparing two classes
$-p(x \mid y=0)^{*} p(y=0)$ vs $p(x \mid y=1){ }^{*} p(y=1)$
- Write probability of each class as
$-p(y=0 \mid x)=p(y=0, x) / p(x)$
$-\quad=p(y=0, x) /(p(y=0, x)+p(y=1, x))$
- Divide by $p(y=0, x)$, we get
- $\left.\quad=1 /(1+\exp (-\mathrm{a})) \quad{ }^{* *}\right)$
- Where
- $a=\log [p(x \mid y=0) p(y=0) / p(x \mid y=1) p(y=1)]$
- (**) called the logistic function, or logistic sigmoid.

Gaussian models

- Return to Gaussian models with equal covariances

$$
\begin{aligned}
& \mathcal{N}(\underline{x} ; \underline{\mu}, \Sigma)=\frac{1}{(2 \pi)^{d / 2}}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\underline{x}-\underline{\mu})^{T} \Sigma^{-1}(\underline{x}-\underline{\mu})\right\} \\
& 0<\log \frac{p(x \mid y=0)}{p(x \mid y=1)} \frac{p(y=0)}{p(y=1)}=\left(\mu_{0}-\mu_{1}\right)^{T} \Sigma^{-1} x+\text { constants }
\end{aligned}
$$

Now we also know that the probability of each class is given by:

$$
p(y=0 \mid x)=\operatorname{Logistic}\left({ }^{* *}\right)=\operatorname{Logistic}\left(a^{\top} x+b\right)
$$

We'll see this form again soon...

