
Machine Learning and Data Mining

2 : Bayes Classifiers

Kalev Kask

+



A basic classifier
• Training data D={x(i),y(i)}, Classifier  f(x ; D)

– Discrete feature vector x

– f(x ; D) is a contingency table

• Ex: credit rating prediction (bad/good)
– X1 = income (low/med/high)

– How can we make the most # of correct predictions?
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Features # bad # good

X=0 42 15

X=1 338 287

X=2 3 5
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A basic classifier
• Training data D={x(i),y(i)}, Classifier  f(x ; D)

– Discrete feature vector x

– f(x ; D) is a contingency table

• Ex: credit rating prediction (bad/good)
– X1 = income (low/med/high)

– How can we make the most # of correct predictions?

– Predict more likely outcome

for each possible observation
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A basic classifier
• Training data D={x(i),y(i)}, Classifier  f(x ; D)

– Discrete feature vector x

– f(x ; D) is a contingency table

• Ex: credit rating prediction (bad/good)
– X1 = income (low/med/high)

– How can we make the most # of correct predictions?

– Predict more likely outcome

for each possible observation

– Can normalize into probability:

p( y=good | X=c )

– How to generalize?

4

Features # bad # good

X=0 .7368 .2632

X=1 .5408 .4592

X=2 .3750 .6250

(c) Alexander Ihler



• Two events: headache, flu

• p(H) = 1/10

• p(F) = 1/40

• p(H|F) = 1/2

• You wake up with a headache – what is the chance that you 

have the flu?

H

F

Example from Andrew

Moore’s slides

Bayes Rule



• Two events: headache, flu

• p(H) = 1/10

• p(F) = 1/40

• p(H|F) = 1/2

• P(H & F) = ?

• P(F|H) = ?

Example from Andrew

Moore’s slides
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Bayes rule
• Two events: headache, flu

• p(H) = 1/10

• p(F) = 1/40

• p(H|F) = 1/2

• P(H & F) = p(F) p(H|F)

= (1/2) * (1/40) = 1/80

• P(F|H) = ?

H

F

Example from Andrew

Moore’s slides



Bayes rule
• Two events: headache, flu

• p(H) = 1/10

• p(F) = 1/40

• p(H|F) = 1/2

• P(H & F) = p(F) p(H|F)

= (1/2) * (1/40) = 1/80

• P(F|H) = p(H & F) / p(H)

= (1/80) / (1/10) = 1/8

H

F

Example from Andrew

Moore’s slides



Classification and probability
• Suppose we want to model the data

• Prior probability of each class,  p(y)

– E.g., fraction of applicants that have good credit

• Distribution of features given the class, p(x | y=c)

– How likely are we to see “x” in users with good credit?

• Joint distribution

• Bayes Rule: 

(Use the rule of total probability

to calculate the denominator!)

(c) Alexander Ihler



Bayes classifiers
• Learn “class conditional” models

– Estimate a probability model for each class

• Training data
– Split by class

– Dc = { x(j) : y(j) = c }

• Estimate p(x | y=c) using Dc

• For a discrete x, this recalculates the same table…

Features # bad # good

X=0 42 15

X=1 338 287

X=2 3 5

p(y) 383/690 307/690

p(x | 
y=0)

p(x | 
y=1)

42 / 
383

15 / 307

338 / 383 287 / 307

3 / 383 5 / 307

p(y=0|x) p(y=1|x)

.7368 .2632

.5408 .4592

.3750 .6250
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Bayes classifiers
• Learn “class conditional” models

– Estimate a probability model for each class

• Training data
– Split by class

– Dc = { x(j) : y(j) = c }

• Estimate p(x | y=c) using Dc

• For continuous x, can use any density estimate we like
– Histogram

– Gaussian

– …
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Gaussian models
• Estimate parameters of the Gaussians from the data

Feature x1 ! (c) Alexander Ihler



Multivariate Gaussian models
• Similar to univariate case

Maximum likelihood estimate:

¹ = length-d column vector

§ = d x d matrix

|§|  = matrix determinant
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Example: Gaussian Bayes for Iris Data

• Fit Gaussian distribution to each class {0,1,2}

14(c) Alexander Ihler



Bayes classifiers
• Estimate p(y) = [ p(y=0) , p(y=1) …]

• Estimate p(x | y=c)  for each class c

• Calculate  p(y=c | x) using Bayes rule

• Choose the most likely class c

• For a discrete x, can represent as a contingency table…
– What about if we have more discrete features?

Features # bad # good

X=0 42 15

X=1 338 287

X=2 3 5

p(y) 383/690 307/690

p(x | 
y=0)

p(x | 
y=1)

42 / 
383

15 / 307

338 / 383 287 / 307

3 / 383 5 / 307

p(y=0|x) p(y=1|x)

.7368 .2632

.5408 .4592

.3750 .6250

(c) Alexander Ihler



• Make a truth table of all 

combinations of values

A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Joint distributions

(c) Alexander Ihler



• Make a truth table of all 

combinations of values

• For each combination of values,

determine how probable it is

• Total probability must sum to one

• How many values did we specify?

A B C p(A,B,C | y=1)

0 0 0 0.50

0 0 1 0.05

0 1 0 0.01

0 1 1 0.10

1 0 0 0.04

1 0 1 0.15

1 1 0 0.05

1 1 1 0.10

Joint distributions

(c) Alexander Ihler



• Estimate probabilities from the data

– E.g., how many times (what fraction) 

did each outcome occur?

• M data  <<  2^N parameters?

• What about the zeros?

– We learn that certain combinations are impossible?

– What if we see these later in test data?

• Overfitting!

A B C p(A,B,C | y=1)

0 0 0 4/10

0 0 1 1/10

0 1 0 0/10

0 1 1 0/10

1 0 0 1/10

1 0 1 2/10

1 1 0 1/10

1 1 1 1/10

Overfitting & density estimation

(c) Alexander Ihler



• Estimate probabilities from the data
– E.g., how many times (what fraction) 

did each outcome occur?

• M data  <<  2^N parameters?

• What about the zeros?
– We learn that certain combinations are impossible?

– What if we see these later in test data?

• One option: regularize

• Normalize to make sure values sum to one…

A B C p(A,B,C | y=1)

0 0 0 4/10

0 0 1 1/10

0 1 0 0/10

0 1 1 0/10

1 0 0 1/10

1 0 1 2/10

1 1 0 1/10

1 1 1 1/10

Overfitting & density estimation

(c) Alexander Ihler



• Another option: reduce the model complexity

– E.g., assume that features are independent of one another

• Independence:

• p(a,b) = p(a) p(b)

• p(x1, x2, … xN | y=1) = p(x1 | y=1) p(x2 | y=1) … p(xN | y=1)

• Only need to estimate each individually

A p(A 
|y=1)

0 .4

1 .6

A B C p(A,B,C | y=1)

0 0 0 .4 * .7 * .1

0 0 1 .4 * .7 * .9

0 1 0 .4 * .3 * .1

0 1 1 …

1 0 0

1 0 1

1 1 0

1 1 1

B p(B |y=1)

0 .7

1 .3

C p(C |y=1)

0 .1

1 .9

Overfitting & density estimation

(c) Alexander Ihler
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x1 x2 y

1 1 0

1 0 0

1 0 1

0 0 0

0 1 1

1 1 0

0 0 1

1 0 1

Observed Data:

<

>

Prediction given some observation x?

Decide class 0

Example: Naïve Bayes

(c) Alexander Ihler



Example: Naïve Bayes
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x1 x2 y

1 1 0

1 0 0

1 0 1

0 0 0

0 1 1

1 1 0

0 0 1

1 0 1

Observed Data:

(c) Alexander Ihler



Example: Joint Bayes

24

x1 x2 y

1 1 0

1 0 0

1 0 1

0 0 0

0 1 1

1 1 0

0 0 1

1 0 1

Observed Data:

x1 x2 p(x | y=0)

0 0 1/4

0 1 0/4

1 0 1/4

1 1 2/4

x1 x2 p(x | y=1)

0 0 1/4

0 1 1/4

1 0 2/4

1 1 0/4

(c) Alexander Ihler



• Variable y to predict, e.g. “auto accident in next year?”

• We have *many* co-observed vars x=[x1…xn]
– Age, income, education, zip code, …

• Want to learn p(y | x1…xn ), to predict y
– Arbitrary distribution:  O(dn) values!

• Naïve Bayes: 
– p(y|x)= p(x|y) p(y) / p(x)   ; p(x|y) = i p(xi|y)

– Covariates are independent given “cause”

• Note: may not be a good model of the data
– Doesn’t capture correlations in x’s

– Can’t capture some dependencies

• But in practice it often does quite well!

Naïve Bayes Models

(c) Alexander Ihler



• y 2 {spam,  not spam}

• X = observed words in email

– Ex: [“the” … “probabilistic” … “lottery”…]

– “1” if word appears; “0” if not

• 1000’s of possible words:  21000s parameters?

• # of atoms in the universe:  » 2270…

• Model words given email type as independent

• Some words more likely for spam (“lottery”)

• Some more likely for real (“probabilistic”)

• Only 1000’s of parameters now…

Naïve Bayes Models for Spam

(c) Alexander Ihler
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22

Again, reduces the number of parameters of the model:

Bayes:  n2/2          Naïve Bayes: n
x1

x2

Naïve Bayes Gaussian Models

(c) Alexander Ihler



• Bayes rule;  p(y | x) = p(x|y)p(y)/p(x)

• Bayes classifiers

– Learn p( x | y=C ) , p( y=C )

• Maximum likelihood (empirical) estimators for

– Discrete variables

– Gaussian variables

– Overfitting; simplifying assumptions or regularization

• Naïve Bayes classifiers

– Assume features are independent given class:

p( x | y=C )   =   p( x1 | y=C ) p( x2 | y=C ) …

You should know…

(c) Alexander Ihler



• Given training data, compute p( y=c| x) and choose largest

• What’s the (training) error rate of this method?

30

Features # bad # good

X=0 42 15

X=1 338 287

X=2 3 5

A Bayes Classifier

(c) Alexander Ihler



A Bayes classifier
• Given training data, compute p( y=c| x) and choose largest

• What’s the (training) error rate of this method?

31

Features # bad # good

X=0 42 15

X=1 338 287

X=2 3 5

Gets these examples wrong:

Pr[ error ] = (15 + 287 + 3) / (690)

(empirically on training data: 

better to use test data)

(c) Alexander Ihler



Bayes Error Rate
• Suppose that we knew the true probabilities:

– Observe any x:

– Optimal decision at that particular x is:

– Error rate is:

• This is the best that any classifier can do!

• Measures fundamental hardness of separating y-values given only features x

• Note: conceptual only!
– Probabilities p(x,y) must be estimated from data

– Form of p(x,y) is not known and may be very complex

32

(at any x)

= “Bayes error rate”

(c) Alexander Ihler



A Bayes classifier
• Bayes classification decision rule compares probabilities:

• Can visualize this nicely if x is a scalar:

Feature x1 !

Shape: p(x | y=0 )

Area: p(y=0)
Shape:  p(x | y=1 )

Area: p(y=1)

p(x , y=1 )

p(x , y=0 )

Decision boundary

<

>

<

>=

(c) Alexander Ihler



A Bayes classifier
• Not all errors are created equally…

• Risk associated with each outcome?  

p(x , y=1 )
p(x , y=0 ) Decision boundary

{ {
Type 1 errors: false positives

Type 2 errors: false negatives

False positive rate:  (# y=0, ŷ=1) / (#y=0)

False negative rate:  (# y=1, ŷ=0) / (#y=1)

<

>

<

>

Add multiplier alpha:

(c) Alexander Ihler



A Bayes classifier
• Increase alpha: prefer class 0

• Spam detection

{ {
Type 1 errors: false positives

Type 2 errors: false negatives

False positive rate:  (# y=0, ŷ=1) / (#y=0)

False negative rate:  (# y=1, ŷ=0) / (#y=1)

p(x , y=1 )
Decision boundaryp(x , y=0 )

<

>

Add multiplier alpha:

(c) Alexander Ihler



A Bayes classifier
• Decrease alpha: prefer class 1

• Cancer detection

{ {
Type 1 errors: false positives

Type 2 errors: false negatives

False positive rate:  (# y=0, ŷ=1) / (#y=0)

False negative rate:  (# y=1, ŷ=0) / (#y=1)

p(x , y=1 )
Decision boundaryp(x , y=0 )

<

>

Add multiplier alpha:

(c) Alexander Ihler



Measuring errors
• Confusion matrix

• Can extend to more classes

• True positive rate:     #(y=1 , ŷ=1) / #(y=1)    -- “sensitivity”

• False negative rate:  #(y=1 , ŷ=0) / #(y=1)

• False positive rate:   #(y=0 , ŷ=1) / #(y=0)

• True negative rate:   #(y=0 , ŷ=0) / #(y=0)     -- “specificity”

Predict 0 Predict 1

Y=0 380 5

Y=1 338 3

(c) Alexander Ihler



ROC Curves
• Characterize performance as we vary the decision threshold?

39

False positive rate

= 1 - specificity
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Guess all 0

Guess all 1

Guess at random, proportion alpha

Bayes classifier,

multiplier alpha

<

>

p(x , y=1 )p(x , y=0 ) Decision boundary

{ {
(c) Alexander Ihler



ROC Curves
• Characterize performance as we vary our confidence threshold?
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False positive rate

= 1 - specificity
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Guess all 0

Guess all 1

Guess at random, proportion alphaClassifier A

Classifier B

Reduce performance to one number?

AUC = “area under the ROC curve”

0.5   < AUC  <  1

(c) Alexander Ihler



Probabilistic vs. Discriminative learning

• “Probabilistic” learning
– Conditional models just explain y:  p(y|x)

– Generative models also explain x: p(x,y)
• Often a component of unsupervised or semi-supervised learning

– Bayes and Naïve Bayes classifiers are generative models

41

“Discriminative” learning:
Output prediction ŷ(x)

“Probabilistic” learning:
Output probability p(y|x)

(expresses confidence in outcomes) 

(c) Alexander Ihler



• “Bayes optimal” decision

– Choose most likely class

• Decision boundary

– Places where probabilities equal

• What shape is the boundary?

Gaussian models

(c) Alexander Ihler



• Bayes optimal decision boundary

– p(y=0 | x) = p(y=1 | x)

– Transition point between p(y=0|x) >/< p(y=1|x)

• Assume Gaussian models with equal covariances

Gaussian models

(c) Alexander Ihler



• Spherical covariance: Σ = σ2 I

• Decision rule

-2 -1 0 1 2 3 4 5
-2

-1

0

1

2

3

4

5

Gaussian example

(c) Alexander Ihler



Class posterior probabilities
• Useful to also know class probabilities

• Some notation
– p(y=0) , p(y=1) – class prior probabilities

• How likely is each class in general?

– p(x | y=c) – class conditional probabilities

• How likely are observations “x” in that class?

– p(y=c | x) – class posterior probability

• How likely is class c given an observation x?

(c) Alexander Ihler



• Useful to also know class probabilities

• Some notation
– p(y=0) , p(y=1) – class prior probabilities

• How likely is each class in general?

– p(x | y=c) – class conditional probabilities

• How likely are observations “x” in that class?

– p(y=c | x) – class posterior probability

• How likely is class c given an observation x?

• We can compute posterior using Bayes’ rule
– p(y=c | x) = p(x|y=c) p(y=c) / p(x)

• Compute p(x) using sum rule / law of total prob.
– p(x) = p(x|y=0) p(y=0) + p(x|y=1)p(y=1)

– = p(y=0,x) + p(y=1,x)

Class posterior probabilities

(c) Alexander Ihler



• Consider comparing two classes

– p(x | y=0) * p(y=0)     vs p(x | y=1) * p(y=1)

– Write probability of each class as

– p(y=0 | x) = p(y=0, x) / p(x) 

– = p(y=0, x) / ( p(y=0,x) + p(y=1,x) )

– Divide by p(y=0, x), we get

– =  1 / (1  + exp( -a  ) )     (**)

– Where 

– a = log [ p(x|y=0) p(y=0) / p(x|y=1) p(y=1) ]

– (**) called the logistic function, or logistic sigmoid.

Class posterior probabilities

(c) Alexander Ihler



• Return to Gaussian models with equal covariances

Now we also know that the probability of each class is given by:

p(y=0 | x) = Logistic( ** )  = Logistic(  aT x + b ) 

We’ll see this form again soon…

(**)

Gaussian models

(c) Alexander Ihler


